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1.​  Abstract 

Micro aerial vehicles (MAVs) have been an important advancement in human 

engineering.  They can be used as tools for transportation and photography to instruments that 

venture into dangerous areas, as they do not require a pilot onboard. In this class, the engineering 

design process was implemented in order to build a quadcopter that would navigate a set number 

of waypoints in the most efficient manner. Several areas of research were looked at in order to 

optimize and create the best viable configuration. 

After building the drone and competing in the class competition, we discovered a variety 

of things. For manufacturing, developing and creating a simple design allowed for more 

flexibility when assembling our drone. Being able to iterate components and swap out parts 

proved to be useful when changes needed to be made. For autonomy, different optimization 

methods were evaluated to find the fastest path through the given waypoints. On the electronics 

front, we learned about the anatomy of a drone and how each component works together to 

achieve stable, controlled flight. For controls, gain values were varied between 1 and 50, and 

each combination of gain values was run in the simulation to determine what value for Kp and 

Kd would produce the least amount of error. The best gain values for an acceleration cap of 4 

m/s^2 were found to be 28 for Kd and 10 for Kp.  The simulation allowed us to compute the 

optimized flight time using our waypoint sequencing and controller.  It also allowed us to predict 

flight data such as the thrust, throttle, and power usage of the system before we physically tested 

it.   

2.​  Vehicle Design & Manufacturing 

Vehicle Design 

To begin the design process of the drone, a decision was made regarding the shape of the 

drone frame. An “X Frame” design was decided upon as it allows an even distribution of thrust 

across the airframe. This allows the drone to be stable yet maneuverable. The next design 

decision was to implement cut-outs on the frame to reduce the weight of the frame. This design 

can be shown in Figure 1. 



 

Figure 1: Original Drone Frame Design 

The next major design choices included the drone legs and a cage for the LIDAR. The 

drone legs for the initial design were undersized but were used as placeholders for presentation. 

The LIDAR cage was designed to ensure the security of the LIDAR while also allowing vision. 

Both of these components can be seen in Figure 2.  



 

Figure 2: Complete Initial Drone Design 

Following the preliminary design review (PDR), it was recommended to remove the 

cut-outs from the drone frame as it would result in little weight reduction. Another 

recommendation was to allow for more clearance between the propellers and the electronics 

stack which would be positioned in the middle of the drone frame. The last two 

recommendations proposed during the PDR include wider drone legs and increased protection on 

the top of the LIDAR cage. These changes can be seen in Figure 4 which showcases the final 

drone design.  

​ After modifications were made following the PDR, further design changes were made in 

an effort to optimize the aesthetics and performance of the drone. The aesthetics of the drone 

were improved by rotating the motor mount holes. This allowed for the motor wires to smoothly 

run down the arms of the drone frame; preventing dangling wires. This can be visualized in 

Figure 3. A conversation with Professor Lopez provided insight into the improved performance 

of the drone if the motors are mounted on the bottom of the frame. This efficiency is a result of 

the propeller thrust not being obstructed by the frame as can be seen in Figure 4. The transition 

from motors being mounted on the top side to the bottom side of the drone was allowed due to 

the added clearance implemented following the PDR.  



 

Figure 3: Rotated Motor Mount Holes  

 

Figure 4: Final Drone Design with Improved LIDAR Cage, Wider Legs, and Bottom Mounted 

Motors.  



 

Figure 5: Final CAD Design featuring center of mass shown in pink.  

 

​ As we continued to modify and tweak our drone design, we made sure to keep track of 

our center of mass and how it moved. In our initial design the center of mass was about a 

centimeter above the top of the frame. We made the decision to modify our drone legs in a way 

that would lower the battery slightly and try to bring down the center of mass to make it align 

closer to where we were going to place our IMU. Although in the final design the IMU was 

moved underneath the LiDAR, it was important to keep the center of mass as close to the center 

of the frame as possible to avoid uneven weight distribution during flight.  

 

Figure 6: Original sensor stack design, shown left. Final sensor stack design, shown right. 



​ Our initial instrument stack design was primitive and did not successfully take into 

account ease of assembly or simplicity. It featured two acrylic ‘base plates’ that were separated 

using standoffs. This design was meant to hold the fight computer in the middle, sitting on the 

first base plate. The LiDAR then would sit on the second base plate above it. Although this 

design did allow for more room underneath the flight computer for our other components, it did 

not make good use of the built in assembly holes of the flight computer. It also had all the other 

instruments simply placed on the top of the frame, which was simple but messy.  

Our final design was much cleaner and made much better use of the space above and 

below the frame. We moved the PDU underneath the frame and the ESC sat on top of the battery 

cage. This cleared a lot of room on the top of our frame to ensure that our IMU could sit at the 

center of mass. We also made use of the built in holes of the flight computer by fixing the flight 

computer in place using our standoffs through them, this meant we only needed one base plate on 

top to hold our LiDAR, and roll cage. I also added a smaller acrylic plate on top of the battery 

cage to secure the ESC in place. This new design was far more efficient and easier to take apart 

and reassemble if need be.  

Manufacturing 

Item Quantity 

3m Screws 36 

Acrylic plates 2 

Standoffs 20 

3D Printed Parts 2 

Table 1: Manufacturing Parts List 

​ The table above shows the minimal amount of parts needed to build our drone. When 

designing our drone we had a main goal to keep our design simple and easy to modify. As with 



any project, as you begin building there is always something that does not work out. By 

designing our drone to be easy to modify we were able to move our motors underneath the 

frame, as well as move our PDU and ESC underneath. The simple design allowed us to create 

multiple iterations of parts and apply them to our drone the next lab session. In total we had 2 

iterations of our drone legs, 4 iterations of our top base plate, and 2 iterations of our ESC holder 

plate.  

​  

Figure 7: 3d printed legs. 

​ The image above shows two iterations of our 3d printed legs. Due to some measurement 

issues our first iteration’s battery cage was too small. Although unfortunate, it was easy to 

redesign and print our second iteration of the legs which worked perfectly.  

​ During the manufacturing process, we used a number of tools and machines that we had 

at our disposal to create and assemble our drone. We used the UCLA maker space to 3d print our 

drone legs, as well as our roll cage that protects our lidar. We also used the UCLA maker space 

to laser cut our acrylic base plate and ESC holder. 



​    

Figure 8: First Drone Legs Prototype with Heat Set Inserts 

​ The image above shows our first drone legs prototype. Although this was not our final 

design, it does showcase a very important part of our manufacturing process which was heat set 

inserts. Heat set inserts were used to secure our legs to the frame itself, secure the ESC holder to 

the battery cage, and secure the LiDAR cage to the top base plate. Our only concern using these 

was that they would not be strong enough to secure the legs and battery the main frame, 

especially when the drone was flying. After some stress testing and trying to pull the inserts out 

using pliers it became apparent that they would be more than strong enough to accomplish their 

job.  

The process to insert them began with drilling out a 3mm hole (or incorporating a 3mm 

hole into the cad design before printing) this was done to avoid too much plastic getting pushed 

up into the threads during the heating process. After placing the inserts on top of the hole, a 

soldering iron was placed inside the insert, which would then heat up the plastic and slide into 



the hole. After removing the iron and allowing the plastic to cool it was ready to use. The inserts 

themselves were slightly wider than 3mm which allowed them to grab and take hold of the 

plastic as it melted into it.  

3.​  Thrust Profile & Energy Calculations 

After conducting Lab 2., we constructed an experimental thrust profile for our motors. 

This was done by running the motors at varying current values, measuring the resulting thrust, 

and then plotting the results. Below is displayed this plot, with the equation for the 

corresponding best-fit curve shown. 

 

Figure 9: Lab 2 Thrust Curve 

After creating this curve, using the predicted accelerations from one of our waypoint 

trajectory simulations, we calculated the thrust on the drone and mapped it to the current draw. 

Knowing the battery voltage, we then calculated the power draw at each of these accelerations, 

finding the max current and power for the entire trajectory. 

 



Current (A) Power (W) 

17.87 264.45 

17.16 254.05 

… … 

Average Power: 182.14 
 

 

Max. Current (A) Max. Power (W) 

17.87 264.45 
 

Table 2: Current and Power Draw 

We then calculated the total energy used through this simulated trajectory by integrating 

the power over time. Displayed below is the used battery capacity compared to the total battery 

capacity.  

Total Used Capacity 
(mAh) 

Battery Capacity 
(mAh) 

136.89 5000 

 

Table 3: Battery Capacity  

4.​  Electronics Overview 

One of the best parts of designing a drone is picking out each subcomponent. In the 

following section, the role of each component will be discussed, the specific component used 

will be shown, and how they all work together will be analyzed. 



The main brain of our drone is the flight computer. Based on the signals it receives from 

the measurement systems on board, the flight computer calculates and decides how to achieve a 

given positional state. It then signals to various other systems on the drone to achieve the desired 

position. The flight computer selected for this drone is the Jetson Orin Nano, which takes 5V as 

input, and it is displayed below.  

 

Figure 10: Jetson Orin Nano Flight Computer 

Connected to our flight computer via a 3V connection is the autopilot, or flight controller. 

The flight controller receives attitude measurements from the IMU, compares them to the desired 

measurements, and then determines how fast each motor should spin to achieve the desired 

attitude. It then sends this signal to the ESC to be decoded and implemented. The autopilot used 

onboard our drone is the Teensy 4.0. 

 

Figure 11: Teensy 4.0 Autopilot 



Linked to the autopilot is the electronic speed controller (ESC). The ESC receives signals 

from the autopilot, telling it how to distribute power to the motors to achieve a desired attitude 

command. All power that goes to the motors first passes through the ESC. 

Motors are rated according to their stator size and Kv rating. The stator size is essentially 

the size of the internal circle of coils inside the body of the motor. The Kv rating of a motor is 

basically the rotational speed of the motor (in RPM) when 1 volt is applied with no propellers 

attached. For heavier drones, a large stator and lower Kv are desired because these correspond to 

higher torques produced by the motor. For lighter drones, smaller stator sizes and a lower Kv 

rating are desired because not as much torque is necessary, and lower Kv corresponds to 

smoother, more responsive flight. On our drone, we used the Tekko32 F4 Mini 50A electronic 

speed controller with four 1950 Kv T-Motor F40 Pro V Motors. 

 

Figure 12: Tekko32 F4 Mini 50A ESC (left) and one 1950 Kv T-Motor F40 Pro V Motor (right) 

 

For attitude measurements, we use the Adafruit MPU 9250 inertial measurement unit. As 

mentioned, this device measures and provides our flight controller with the x-, y-, and z- 

components of the drone’s linear and rotational velocity and acceleration. The Adafruit IMU 

connects to our Teensy autopilot and is displayed in the figure below. 



 

Figure 13: Adafruit MPU 9250 IMU 

The positioning system on board our drone is the Livox Mid-360 LiDAR. LiDAR is a 

method of remote sensing the environment around the drone using lasers, to ensure the drone 

does not crash into the environment. This system relays position measurements to the flight 

computer, allowing the computer to make informed decisions about its next movement. The 

Livox Mid-360 LiDAR used on our drone takes 9V as input directly from the battery.  

 

Figure 14: Livox Mid-360 LiDAR 

Lastly, to supply all these components with energy, we use a 5000 mAh 4S battery. 5000 

mAh represents the capacity of the battery, which is more than enough to complete our 

competition. 4S relates to the number of battery cells and how they are configured. 4 represents 

the number of cells, and S stands for series, meaning the cells are connected in series (rather than 



P, which stands for parallel).  Our battery connects to a power distribution board, which then 

connects to each of the various components on board  to supply them all with power. 

 

 

Figure 15: 5000 mAh 4S Battery 

 

Lastly, it is valuable to have a visual representation of how each component is linked 

together. Therefore, displayed below is a schematic of each component and how they are all 

connected.  

 

Figure 16: Drone Electronics Schematic 



5.​  Guidance Design & Analysis  

The role of the Autonomy lead is to calculate the optimal path between waypoints in 

order for the MAV to fly through the course as fast as possible. This is a version of the Travelling 

Salesman problem, one of the most famous optimization problems. In the Travelling Salesman 

problem, the salesman needs to visit a given number of cities, visiting each once and returning to 

the starting city in a way to minimize the distance traveled. The problem has been studied for 

almost 100 years, and over that time several popular algorithms have been developed and used to 

solve it. This problem has large real world applications, especially due to the rise in prevalence 

of online shopping and food delivery. 

​ The most basic method to solve this problem is the nearest neighbor approach. In this 

approach, the salesman, or drone in our case, travels to the closest city to his current location. 

The following code excerpt shows the basis of the method: 

% Compute the Euclidean distances from the current position to each waypoint 
   distances = sqrt((waypoints_X - current_position(1)).^2 + ... 
                    (waypoints_Y - current_position(2)).^2 + ... 
                    (waypoints_Z - current_position(3)).^2); 
   
   % Find the closest unvisited waypoint 
   [min_distance, min_index] = min(distances); 
 

Although being very intuitive, the nearest neighbor method does not always result in the path of 

least distance. 

​ The next method is the brute force method, in which all possible paths are calculated. The 

path with the shortest distance is then chosen. This method is the most accurate of the 

optimization methods. However, with large numbers of nodes the method takes immense 

computing power and time, leading to the development of different iterative methods. This 

method was found to be the most effective for paths with under 11 nodes(cite). 



​ The k-opt family of algorithms are heuristic algorithms. They start with an arbitrary path, 

and replace a number k of the legs of the path as long as they produce a shorter path. The most 

common k-values are 2 and 3, with 2 and 3 legs being checked and replaced respectively. This 

method was found to be the most effective for numbers of nodes between 11 and 50 (cite). 

​ Markov's chain family of algorithms is most effective for over 50 nodes (cite). Markov's 

chain methods are stochastic methods and use probability based on current position to determine 

which node to go to next. One example of this is the Ant Colony optimization method, which 

seeks to use the idea of an ant leaving pheromones on its most traveled path to solve these 

problems.  

In order to determine the ideal method, the nearest neighbor, brute force, and 2-opt 

methods were tested. Trials were conducted for a randomized series of waypoints with 8 

waypoints each. The first three trials were conducted with constant z and the last two have 

changes in the z direction. The results are summarized in the table below: 

Trials 1 2 3 4 5 

Brute Force 
Distance (m) 

37.7251 44.8706 38.5325 53.1183 70.0119 

Nearest 
Neighbor 
Distance (m) 

45.0744 44.874 55.5779 57.1227 73.0024 

2-opt Distance 
(m) 

37.7251 44.8706 38.5325 53.1183 70.0119 

Brute Force 
comp. Time 
(s) 

0.1531 0.129 0.1944 0.1646 0.1589 

Nearest 
neighbor 
comp. Time 
(s) 

0.075 0.0863 0.0886 0.0913 0.09 

2-opt comp. 0.1141 0.1536 0.1507 0.1613 0.1156 



Time (s) 

 
The table shows that the brute force and 2-opt methods gave the same path for each, with the 

brute force method generally taking a little longer to compute. The nearest neighbor method 

computed the fastest, but had a slower route in each trial. Due to its accuracy and intuitive 

process, the brute force method was chosen. 

​ However, this method only accounts for distance. In the physical system, changing 

direction causes the craft to need to slow down. In order to attempt to simulate this, a penalty 

was given for changing direction, with different degrees of penalty depending on the magnitude 

of the change in direction. The value of the penalty was found empirically through comparison 

with the MAV simulation to be 1.05. A code snippet for the penalty section can be found below: 

turn_penalty_factor = 1.05; 
% Calculate the direction vector 
       current_direction = waypoint_position - current_position; 
       if norm(current_direction) > 0 
           current_direction = current_direction / norm(current_direction); % 
Normalize the direction vector 
       else 
           current_direction = [0, 0, 0]; 
       end   
       % Calculate the direction change penalty 
       if wp_idx > 1 
           direction_change = dot(previous_direction, current_direction); 
           penalty = (1 - direction_change) * turn_penalty_factor; % Penalty is 
proportional to the change in direction, multiplied by the factor 
                else 
           penalty = 0; 
       end 

The code defines the current direction of the MAV and applies a specified penalty for changing 

direction. Upon further testing, it was observed that for a variety of waypoint sequences, only a 

penalty factor greater than 3 would cause the ideal path to deviate from that of the smallest 

distance. However, in the vast majority of cases, there was no path change regardless of the 

penalty factor. The results are tabulated below: 



 

Trials Crossover Penalty Factor 

1 none 

2 none 

3 3.06 

4 none 

5 3.025 

6 none 

7 none 

8 none 

9 none 

10 none 

 
​ In addition to the computation code, two separate functions were created. One function 

reads in the designated csv file and splits the table into arrays to be used as inputs in the 

computational code. The other outputs the calculated waypoint path in the same format as the 

example file. 

6.​  Control & Simulation Analysis 

6.1 Control 

The goal of optimizing the controls was to have the drone navigate its waypoints with the 

least amount of error. Having a controller with minimal overshoot that adheres to the velocity 

and acceleration constraints is what was desired. Two methods were considered when it came to 

optimizing the controller. One method involved finding the system's root locus, and varying the 

gain K from zero to infinity to determine which Kp and Kd values produce the least amount of 

overshoot and also have the smallest steady state error. This method involved identifying poles 



and zeros, drawing the paths of the poles when k varies from 0 to infinity, and utilizing stability 

criterion to make sure the system converges. The second method considered involved running 

the simulation n by n number of times where n is the maximum value of Kp and Kd, and 

observing how the controller reacts given a set of waypoints. Eventually the latter option, 

nicknamed the ‘brute force method’ was chosen for several reasons. First, it provided a better 

visual understanding of which Kp and Kd values would lead to the least amount of error and 

fastest time, however at the cost of understanding the theory and why those values were 

desirable. The brute force method relied on the sim, rather than theoretical equations, to tell us 

which controller gains would work the best. The brute force method also made it easier to adjust 

gain values given different waypoint information. Root locus cannot easily recalculate gain 

values when a change in waypoints is introduced.  

​ The ideology behind the brute force method was to find the path that would produce the 

least amount of error. This involves position error, which is related to the proportional term Kp, 

and velocity error, which is related to the derivative term Kd. The simulation code was placed 

inside a double for loop. Each of the loops would iterate through integer numbers from 1 to n, n 

being the largest test value for Kp and Kd. In this fashion, the simulation is run n x n times, 

producing an error matrix that holds the total error for every combination of Kp and Kd up to n. 

The least amount of error corresponds to the most ‘efficient’ path. In order to calculate the error, 

the following equation was used 

 𝐸𝑟𝑟𝑜𝑟 =
𝑖=1

3

∑ [
𝑗=1

𝑁

∑ 𝐸𝑟𝑟𝑜𝑟
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

+
𝑗=1

𝑁

∑ 𝐸𝑟𝑟𝑜𝑟
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

]

The outer summation is to sum errors in the x,y, and z components. The inner error is taking the 

sum of the errors of position and velocity at each time step. N is the total number of time steps. 

The location of the minimum value in the error matrix represents the desirable Kp and Kd 



values. Kp values increase by the columns and Kd increases by the rows. The error matrix was 

exported into Excel to visualize which element held the smallest error. Below is a figure of that 

plot. Waypoint sequencing was taken from the guidance code. 

 

Highlighted in blue is the location of the minimum error. The minimal total error was found to be 

1284.1 at a Kp value of 10 and Kd value of 28. While it was required that acceleration be capped 

at 4 meters per second, a secondary test was performed to observe the effects of removing the 

acceleration cap. This produced the following error matrix 

 

As we can see, Kd now becomes unbounded. The minimum total error was also less at 757.75. 

Kp increased slightly to 13. Larger and larger Kd values lead to better tracking due to the fact 

that larger accelerations can be demanded in order to get the desired velocity as quickly as 

possible. So increasing the gains in this case comes at no penalty. In reality, however, large 



instantaneous accelerations demanded by having large gain values is not possible, and for safety 

reasons, decided to cap our acceleration input at 4 m/s^2. 

​ Plots for position and velocity error in the x,y, and z components for the chosen Kp and 

Kd values were also produced to observe the respective demands after the simulation decides to 

move on to the next waypoint. Below are those plots. 

 

 

 



 

 

 

It can be noted that large velocity spikes occur when moving from the current to the next 

waypoint. This is a result of the idealized case we are looking at in the simulation, where 



acceleration is an impulse, and therefore velocity is a step function. This causes the velocity to 

take on large values as a result of an impulse to the system, which is the acceleration. 

Further analysis was done to research how dependent waypoint data was in determining 

Kp and Kd values. Since the root locus method was not implemented, and reliance on the 

simulation was needed to find gain values, it was important to see how dependent gain values 

were to waypoint distances and directions. Waypoints were randomized within a -10 to 10 meter 

cubic space. 10 waypoints were generated, creating 10 error matrices. The following optimal Kp 

and Kd values were obtained. 

 

Random 
Waypoin
ts 1 

Random 
Waypoin
ts 2 

Random 
Waypoin
ts 3 

Random 
Waypoin
ts 4 

Random 
Waypoin
ts 5 

Random 
Waypoin
ts 6 

Random 
Waypoin
ts 7 

Random 
Waypoin
ts 8 

Random 
Waypoin
ts 9 

Random 
Waypoin
ts 10 

Kp 10 14 10 14 11 9 10 10 10 10 

Kd 29 36 28 35 27 23 27 27 26 26 

 

The standard error for Kp values was 0.5537 and the standard error for Kd values was 1.284. 

This data shows that, at least for the scope of the competition being held in the lab, Kp and Kd 

values will not vary significantly given different waypoints. Once distances and time scales 

begin to become larger, the dynamics may require new gain values, however, for this scale, Kp 

and Kd values are around 10 and 28 for most waypoints. 

​ 6.2 Simulation 

The simulation works by making a reference path including position and velocity 

traversing through the waypoints.  These values are calculated using polynomials from kinematic 

equations.  Then it applies feed-forward or feedback controller loops to iterate the position, 

velocity, and acceleration of the drone.  These calculations are done for each component of the 

position, velocity, and acceleration, and they take the form of:  



 𝑢 =  − 𝐾
𝑝
𝑟

𝑒
 −  𝐾

𝑑
𝑑
𝑑𝑡 𝑟

𝑒

 𝑢 =  𝑑2

𝑑𝑡2 𝑟
𝑑

− 𝐾
𝑝
𝑟

𝑒
 −  𝐾

𝑑
𝑑
𝑑𝑡 𝑟

𝑒
+ 𝑔

where is equal to the reference position, and is the difference between the current position 𝑟
𝑑

𝑟
𝑒

and the reference position.  The first controller is used for the x and y components where the 

reference (the waypoints) are not accelerating.  However, in the z direction, acceleration due to 

gravity accelerates the reference, and a feed-forward loop is necessary to keep the controller 

from diverging off of its path.  To simulate the time, discreet steps of dt = 0.01 are taken, and the 

control is run through a loop to find the u input at each time. We also implemented the physical 

constraint of the drone including a maximum net acceleration of less than or equal to  to 4 𝑚

𝑠2

avoid overdrawing power from the battery and losing control.  

The purpose of the simulation is to predict the path of the drone under ideal conditions.  

This was where we found the optimal flight time.  The simulation takes the input of the 

autonomy system, which produces the optimal order of waypoints, and therefore the path.  Then 

it applies the controller of the guidance system to control the path that the drone will take.  

Because the controls utilize the brute force method to find the optimal Kp and Kd coefficients, 

the simulation first runs the flight path under every combination of coefficients.  Throughout 

every run, the error of the flight path and reference path is calculated and summed up at the end.  

Then, by comparing the errors, we chose the optimal controller coefficients and ran the 

simulation one more time using that controller to plot the path and extract the acceleration of the 

drone throughout the flight.   

Data from the simulation is useful as it contains the flight time and acceleration of the 

drone.  This allowed us to find the thrust profile, the power necessary for flight, and the energy 



drawn from the battery to get through the whole course.  The thrust profile for our test flight is 

given below.  

 

In this profile, it can be seen that the hover thrust is equal to the acceleration due to 

gravity times the mass of the drone.  It drops below that when the drone is traveling downwards. 

The maximum thrust during flight is 16.8364 kg m/s^2. The acceleration peaks at 12.95 m/s^2.  

When subtracting hover acceleration, we see the net acceleration is 3.14 m/s^2.  It does not need 

to approach the maximum acceleration we set for safety.  Using the thrust, our electronics 

subsystem is able to find the power draw throughout the flight as well as the energy draw from 

the battery.   

One way to make the simulation more accurate in finding the optimal flight is to update 

our reference path with a higher-order kinematics equation.  The reference path only finds the 

velocity and position between two points assuming the velocity is constant.  If instead, we were 

to make v differentiable throughout the reference, the controller would have a more precise path 



to follow.  This would also help us find more optimal Kd and Kp values.  This is because we 

determine the best Kd and Kp by measuring the total positional error throughout each trial flight.  

This makes the error unrealistic because the majority of it would come from the inability of a 

continuous velocity trajectory to follow the sharp turns of our current reference path.   

Our current simulation runs according to these steps to find the reference.   

 

And these steps to apply the controller: 

 



​ In this model, we also assumed translational motion as the drone can navigate the path 

without having to rotate.  In a future project, we could take on the task of designing the controls 

and simulation of an MAV that must rotate in the direction it will traverse.  We could then 

analyze the power and time efficiency of the two methods of travel.   

7 Flight Analysis 

After competing in the class competition, we found that human error significantly 

influenced how well we performed. Though we had designed the best waypoint sequencing 

algorithm known to mankind, we placed last place in the class competition because of our poor 

ability to control the drone. Had we implemented an autopilot system to fly through the 

waypoints, we would have won the class competition with world-record-setting course times.   

8 Lessons Learned 

8.1 Vehicle Design & Manufacturing  

Upon arrival for flight testing, it became known that our drone was used by the professor 

to gain insight on the class’s drone controls. Due to the initial vehicle control testing, the drone 

endured many crash landings with the consequence of fractures developing in the drone legs; 

which later caused a complete break of the drone legs. To prevent this from occurring in the 

future and ensure the robustness of the drone, the infill of the 3D-printed legs should increased. 

This would produce more sturdy drone legs.  

8.2 Controls 

Many lessons were learned by creating a control system for this MAV. One important 

concept that was realized is that visualizing how acceleration, or the control input in this case, 



affects velocity and position errors is not very simple. In the case where the simulation would 

move onto the next waypoint, large velocity errors were seen compared to the position. Position 

error makes a lot of sense, as it is the physical distance between the current MAV location and 

the next waypoint. However obtaining a velocity reference is dependent on the impulse in 

acceleration, which is less easy to visualize. 

8.2 Electronics 

From electronics, we learned how each component works together to achieve flight. We 

conducted research into each specific electronics component and learned what each component’s 

role in the overall design was, and how it communicates with other subsystems. We also learned 

valuable technical skills through soldering, and how to apply concepts learned in the classroom 

to the real world by computing power, energy, and flight time calculations. 

8.4 Autonomy 

Following the competition, we learned that although all the groups stated to have used the 

brute force method, 4 of the 5 had differing routes for at least one set of waypoints. This could be 

attributed in our case to the inclusion of the penalty factor to penalize large turns. An additional 

factor that was not included in the code was the MAV returning to its original point, which could 

have been another explanation for the difference in paths. 

8.5 Simulation 

Throughout designing the simulation script of the drone, we learned how to use feedback 

and feed-forward loops to control and model an MAV trajectory.  We also learned how to modify 

our model to accommodate multiple types of waypoint trajectories and physical constraints of 



the flight.  As we were developing our code, we started with a simple model in 2 dimensions and 

ignored gravity. Then, we implemented the vertical component, which was a level of complexity 

higher than the 2-dimensional path.  Then we optimized the software to run faster, but we opted 

for a model that would sacrifice processing time for a more accurate Kd and Kp.  Had the task 

been to optimize flight and processing time, a different method of finding the controls would 

have been implemented.   

 Team Contributions 

Michael Moussa was the design lead and worked primarily with the CAD model. This 

included the design and optimization of the drone frame and other 3D CAD components. Hunter 

Streeter was the manufacturing lead and worked closely with Michael in redesigning and 

assembling the drone, this role included 3D printing parts, laser cutting components, and 

assembling the drone. Christopher McCormick was the electronics lead. Chris Imasdounian 

worked on obtaining the most efficient controller that would follow a set of waypoints. This 

included working with Vidal, the simulation lead, in order to code a simulator, then apply test 

conditions for different gain values and determine which gains were the most efficient. Chris 

McCormick handled all component compatibility, and soldering, as well as all the power, energy, 

and flight time calculations. Giovanni was responsible for writing the autonomy sections of the 

report, as well as creating the waypoint sequencing code. Vidal was responsible for writing the 

simulation script in order to test the waypoint sequencing and controller along with Giovanni and 

Chris.  He also calculated the thrust profile and worked with Chris to find the power and energy 

profile of the drone throughout the flight.    

 



7.​  Appendix 

 
%% MAV Autonomy Final Code 

% 

% 105574974 

% Giovanni Zarich 

% 

% This is the code to be used in the flight competition to determine the 

% ideal path for the MAV. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Code to read in waypoint file given 

% Read the CSV file into a table, skipping the first row 

filename = 'waypoints_example.csv'; 

data = readtable(filename); 

% Convert the table to an array 

dataArray = table2array(data); 

% Separate the columns into individual arrays 

sequenceNumber = dataArray(:, 1); 

waypoints_X = dataArray(:, 2); 

waypoints_Y = dataArray(:, 3); 

waypoints_Z = dataArray(:, 4); 

%% Post PDR Code 

% this code attempts to solve for the time it takes to slow down / turn 

% instead of just total distance 

% Number of waypoints 

num_waypoints = numel(waypoints_X); 

% Start the cube at origin 



current_position = [0, 0, 0]; 

% Keep track of visited waypoints 

visited_waypoints = false(num_waypoints, 1); 

% Output the X, Y, Z coordinates of the waypoints in the order the cube 

navigates them 

waypoints_path_bruteForce = zeros(num_waypoints, 3); 

% Calculate all possible permutations of waypoints 

waypoints_permutations = perms(1:num_waypoints); 

% Iterate over each permutation 

min_cost = Inf; 

fastest_permutation = []; 

fastest_perm_index = 0; % To store the index of the fastest permutation 

for perm_idx = 1:size(waypoints_permutations, 1) 

   % Initialize the current position to the starting point 

   current_position = [0, 0, 0]; 

   total_cost = 0; 

   previous_direction = []; 

   

   % Iterate over each waypoint in the current path 

   for wp_idx = 1:num_waypoints 

       % Get the waypoint index from the current path 

       wp_index = waypoints_permutations(perm_idx, wp_idx); 

       

       % Calculate the distance from the current position to the current 

waypoint 

       waypoint_position = [waypoints_X(wp_index), waypoints_Y(wp_index), 

waypoints_Z(wp_index)]; 

       distance_to_wp = sqrt(sum((waypoint_position - current_position).^2)); 

       



       % Calculate the direction vector 

       current_direction = waypoint_position - current_position; 

       if norm(current_direction) > 0 

           current_direction = current_direction / norm(current_direction); % 

Normalize the direction vector 

       else 

           current_direction = [0, 0, 0]; 

       end 

       

      % Define penalty factor 

       turn_penalty_factor = 1.05; 

       % Calculate the direction change penalty 

       if wp_idx > 1 

           direction_change = dot(previous_direction, current_direction); 

           penalty = (1 - direction_change) * turn_penalty_factor; % Penalty is 

proportional to the change in direction 

       else 

           penalty = 0; 

       end 

       

       % Update the current position and total cost 

       current_position = waypoint_position; 

       total_cost = total_cost + distance_to_wp + penalty; 

       

       % Update the previous direction 

       previous_direction = current_direction; 

   end 

    

   % Update the minimum cost and waypoints path if needed 



   if total_cost < min_cost 

       min_cost = total_cost; 

       fastest_permutation = waypoints_permutations(perm_idx, :); 

       fastest_perm_index = perm_idx; % Store the index of the fastest 

permutation 

   end 

end 

% Check if the fastest_permutation is found 

if isempty(fastest_permutation) 

   error('No valid permutation found.'); 

else 

   % Navigate the small cube through the fastest route 

   for wp_idx = 1:num_waypoints 

       % Get the waypoint index from the fastest permutation 

       wp_index = fastest_permutation(wp_idx); 

       

       % Update the current position to the current waypoint 

       current_position = [waypoints_X(wp_index), waypoints_Y(wp_index), 

waypoints_Z(wp_index)]; 

       waypoints_path_bruteForce(wp_idx,:) = current_position; % Store the 

current position 

   end 

end 

% Output the X, Y, Z coordinates of the waypoints in the order the cube 

navigates them 

disp('Waypoints Path:'); 

disp(waypoints_path_bruteForce); 

%% Waypoint Writer Section 

% % In case 



% 

% % Number of rows in the waypoints_path_BruteForce 

% numRows = size(waypoints_path_bruteForce, 1); 

% 

% % Create a sequence number column 

% sequenceNumber = (1:numRows)'; 

% 

% % Combine the sequence number with the waypoints data 

% dataWithSequence = [sequenceNumber, waypoints_path_bruteForce]; 

% 

% % Convert the array to a table and add column titles 

% columnTitles = {'seq num', 'x', 'y', 'z'}; 

% dataTable = array2table(dataWithSequence, 'VariableNames', columnTitles); 

% 

% % Define filename 

% filename = 'waypoints_with_sequence_test.csv'; 

% 

% % Write the table to a CSV file 

% writetable(dataTable, filename); 

% 

% % Display a message indicating the file was written 

% disp(['Data successfully written to ', filename]); 

 

clc; 

clear; 

close all; 

%% MAV Simulation 

% Vidal Reynoso Jr 



% 305622035 

% MAE 157A 

%% Initiate Variables 

% Change the waypoint list columns to include sequence number 

% Waypoint List Example 

% [x y z] coordinates of waypoints within 10 x 10 m area 

wp =  [1 1 1 1; 

      2 1 5 5; 

      3 2 9 5; 

      4 4 4 8; 

      5 4 1 7; 

      6 8 3 5; 

      7 2 7 5; 

      8 3 8 9; 

      9 1 1 6; 

      10 2 7 8]; 

% Time step 

dt = 0.01; 

% Guess total steps 

N=8000; 

% Number of Kp and Kd values to check 

n = 30; 

Kp = 1:n; 

Kd = 1:n; 

r_error = zeros(N,3); 

error = zeros(n,n); 

time = zeros(n,n); 

v_max = 1; 

u_max = 4; 



ep = 0.5; 

g = 9.81; 

iterations_ab = zeros(n,n); 

for a = 1:n 

   for b = 1:n 

       % Distance and velocity from start node (0) 

       r = zeros(N , 3); 

       rd = zeros(N , 3); 

       r(1,1) = wp(1,2); 

       r(1,2) = wp(1,3); 

       r(1,3) = wp(1,4); 

       v = zeros(N , 3); 

       vd = zeros(N, 3); 

       ad = zeros(N,3); 

       a = zeros(N,3); 

       u = zeros(N,3); 

       u_minus_g = zeros(N,3); 

       j = 1; k = 1; 

       elapsedt_checkpoint = zeros(size(wp,1),1); 

       elapsedt_total = 0; 

       step = zeros(1,size(wp,1)); 

       %% Loop 

       % Point of confusion: is vmax for each velocity component or total 

       % velocity?  If for total velocity, 

       for i = 1:N 

           if j==1 | abs(norm(r(i,:) - wp(j,2:4))) <=ep && j < size(wp, 1) 

               Tx = abs(wp(j+1 , 2) - wp(j,2))/v_max; 

               Ty = abs(wp(j+1 , 3) - wp(j,3))/v_max; 

               Tz = abs(wp(j+1 , 4) - wp(j,4))/v_max; 



               T = max([Tx Ty Tz]); 

               j = j+1; 

               step(j) = i; 

           end 

           if j ==size(wp,1) && abs(norm(r(i,:) - wp(j,2:4))) <= ep 

               iterations_ab(a,b) = i; 

           end 

           vd(i,1) = (wp(j,2) - wp(j-1,2)) / T; 

           vd(i,2) = (wp(j,3) - wp(j-1,3)) / T; 

           vd(i,3) = (wp(j,4) - wp(j-1,4)) / T; 

           rd(i,1) = wp(j-1,2) + vd(i,1) * dt *k*(i-step(j)); 

           rd(i,2) = wp(j-1,3) + vd(i,2) * dt *k*(i-step(j)); 

           rd(i,3) = wp(j-1,4) + vd(i,3) * dt *k*(i-step(j)); 

           u(i,1) = -Kp(a)*(r(i,1) - rd(i,1)) - Kd(b)*(v(i,1)-vd(i,1)); 

           u(i,2) = -Kp(a)*(r(i,2) - rd(i,2)) - Kd(b)*(v(i,2)-vd(i,2)); 

           u(i,3) = -Kp(a)*(r(i,3) - rd(i,3)) - Kd(b)*(v(i,3)-vd(i,3)) + g; 

           u_minus_g(i,1) = u(i,1); 

           u_minus_g(i,2) = u(i,2); 

           u_minus_g(i,3) = u(i,3) - g; 

           u1 = norm(u_minus_g(i,:)); 

           if  abs(u1) > u_max 

               u(i,:)= u_minus_g(i,:)/abs(u1) *u_max; 

               u(i,3) = u(i,3) + g; 

           end 

           r(i+1 , 1) = r(i,1) + dt*v(i,1) + 0.5*dt^2*(u(i,1)); 

           r(i+1 , 2) = r(i,2) + dt*v(i,2) + 0.5*dt^2*(u(i,2)); 

           r(i+1 , 3) = r(i,3) + dt*v(i,3) + 0.5*dt^2*(u(i,3)-g); 

           r_error(i,1) = r(i,1) - rd (i,1); 

           r_error(i,2) = r(i,2) - rd (i,2); 



           r_error(i,3) = r(i,3) - rd (i,3); 

           v(i+1 , 1) = v(i,1) + dt*(u(i,1)); 

           v(i+1 , 2) = v(i,2) + dt*(u(i,2)); 

           v(i+1 , 3) = v(i,3) + dt*(u(i,3)-g); 

       end 

       % Find which Kp and Kd value produces least error 

       error(a,b) = sum(abs(norm(r_error))); 

       time(a,b) = error(a , b)/v_max; 

       j = 1; 

   end 

end 

%% Find optimal Kp and Kd 

t_fastest = min(time,[],"all"); 

[row,col] = find(time==min(time(:))); 

Kp_opt = Kp(col); 

Kd_opt = Kd(row); 

N = iterations_ab(row,col); 

r = zeros(N , 3); 

r(1,1) = wp(1,2); 

r(1,2) = wp(1,3); 

r(1,3) = wp(1,4); 

rd = zeros(N , 3); 

r_error = zeros(N,3); 

v = zeros(N , 3); 

vd = zeros(N, 3); 

u = zeros(N,3); 

u_minus_g = zeros(N,3); 

%% Find path of optimal controls 

for i = 1:N 



       if j==1 || abs(norm(r(i,:) - wp(j,2:4)))<=ep && j < size(wp, 1) 

           Tx = abs(wp(j+1 , 2) - wp(j,2))/v_max; 

           Ty = abs(wp(j+1 , 3) - wp(j,3))/v_max; 

           Tz = abs(wp(j+1 , 4) - wp(j,4))/v_max; 

           T = max([Tx Ty Tz]); 

           elapsedt_checkpoint(j) = i * dt; 

           j = j+1; 

           step(j) = i; 

       end 

       if j ==size(wp,1) && abs(norm(r(i,:) - wp(j,2:4))) <= ep 

           elapsedt_total = i*dt; 

           iterations = i; 

       end 

   vd(i,1) = (wp(j,2) - wp(j-1,2)) / T; 

   vd(i,2) = (wp(j,3) - wp(j-1,3)) / T; 

   vd(i,3) = (wp(j,4) - wp(j-1,4)) / T; 

   rd(i,1) = wp(j-1,2) + vd(i,1) * dt *k*(i-step(j)); 

   rd(i,2) = wp(j-1,3) + vd(i,2) * dt *k*(i-step(j)); 

   rd(i,3) = wp(j-1,4) + vd(i,3) * dt *k*(i-step(j)); 

   u(i,1) = -Kp_opt*(r(i,1) - rd(i,1)) - Kd_opt*(v(i,1)-vd(i,1)); 

   u(i,2) = -Kp_opt*(r(i,2) - rd(i,2)) - Kd_opt*(v(i,2)-vd(i,2)); 

   u(i,3) = -Kp_opt*(r(i,3) - rd(i,3)) - Kd_opt*(v(i,3)-vd(i,3)) + g; 

   u_minus_g(i,1) = u(i,1); 

   u_minus_g(i,2) = u(i,2); 

   u_minus_g(i,3) = u(i,3) - g; 

   u1 = norm(u_minus_g(i,:)); 

   if  abs(u1) > u_max 

       u(i,:) = u_minus_g(i,:)/abs(u1) *u_max; 

       u(i,3) = u(i,3) + g; 



   end 

       r(i+1 , 1) = r(i,1) + dt*v(i,1) + 0.5*dt^2*(u(i,1)); 

       r(i+1 , 2) = r(i,2) + dt*v(i,2) + 0.5*dt^2*(u(i,2)); 

       r(i+1 , 3) = r(i,3) + dt*v(i,3) + 0.5*dt^2*(u(i,3)-g); 

       r_error(i,1) = r(i,1) - rd (i,1); 

       r_error(i,2) = r(i,2) - rd (i,2); 

       r_error(i,3) = r(i,3) - rd (i,3); 

       v(i+1 , 1) = v(i,1) + dt*(u(i,1)); 

       v(i+1 , 2) = v(i,2) + dt*(u(i,2)); 

       v(i+1 , 3) = v(i,3) + dt*(u(i,3)-g); 

  

end 

%% Plotting 

v_mag = vecnorm(v'); 

v_norm = (v_mag- min(v_mag))/(max(v_mag) - min(v_mag)); 

figure(1) 

scatter3(wp(:,2), wp(:,3),wp(:,4)) 

grid on 

hold on 

plot3(rd(:,1),rd(:,2),rd(:,3),'blue','LineWidth',2) 

h = plot3(r(:,1),r(:,2),r(:,3),'Red','LineWidth',2); 

% Initialize video writer 

V = VideoWriter('animated1.avi'); 

open (V); 

for k = 2:N 

   set(h, 'XData',r(1:k,1),'YData',r(1:k,2),'ZData',r(1:k,3)); 

   pause(0.00005 / v_norm(k)); 

   frame = getframe(gcf); 

   writeVideo(V,frame); 



end 

close(V); 

hold off 

xlim([0 10]) 

ylim([0 10]) 

%% Optional Visual (Kinda Slow) 

cmap = jet(256); 

figure(2) 

scatter3(wp(:,2), wp(:,3),wp(:,4)) 

hold on 

for k = 1:size(r,1)-1 

   colorIndex = round(v_norm(k) *255) + 1; 

   plot3(r(k:k+1,1), r(k:k+1,2),r(k:k+1,3), 

'Color',cmap(colorIndex,:),'LineWidth',2); 

end 

grid on 

xlim([0 10]) 

ylim([0 10]) 

colormap(cmap); 

clim([min(v_mag) max(v_mag)]); 

colorbar; 

xlabel('X') 

ylabel('Y') 

zlabel('Z') 

title('Path of the object with velocity gradient'); 
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